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SUMMARY

Launch vehicles with slender cone-cylinder forebodies may experience aeroelastic

instability under certain conditions. This flow phenomenon has been documented by

wind-tunnel experiments. The flow expands to supersonic speeds when passing the

cone-cylinder shoulder. The supersonic region is terminated by a normal shock that

causes the boundary layer to separate. At increasing angle of attack the leeward

boundary layer is thickened and more easily separated, resulting in a forward move-

ment of the shock. On the windward side opposite effects occur, and a negative

forebody load is generated that moderately affects the vehicle dynamics. When the

angle of attack exceeds a critical value, the leeward boundary layer can not support

the shock at any place; this results in complete leeward separation aft of the cone-

cylinder shoulder. The associated jumpwise load change is shown to severely affect

vehicle dynamics.

The Saturn IB SA-203 utilizes the generalized payload shroud, and at first glance it

is geometrically similar enough to the above mentioned cone-cylinder to warrant con-

cern that a similar problem may exist for the SA-203 vehicle.

However, the biconic shoulder of the generalized payload shroud "preseparates" the

flow and the reattaching boundary layer on the conic-frustum is strong enough to

negotiate the conic-frustum-cylinder shoulder without complete flow separation. The

result is that the terminal shock moves smoothly along the cylinder with increasing

angle of attack, and largech-_es in normal force and undamping effects are avoided.

The forward movement of the leeward shock is still present because of a thickened

boundary layer, and the aft movement of the windward shock results in a negative

cylinder load and attendant moderate undamping effects.
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The results of the static aerodynamic data analysis for the SA-203 were used in the

quasi-steady computational method to predict the aerodynamic damping in the Mach

number range of 0.7 to 2.0. The results of the computation show that the SA-203

vehicle is aeroelastically stable for the first three bending modes. It is therefore

speculated that the SA-203 will be aerodynamically damped over the entire ascent

trajectory.
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Section 1

INTRODUCTION

The present study has been conducted to provide the aerodynamic damping characteristics

of the Saturn IB SA-203 vehicle and to document the flow field over the forward portion

of the vehicle. The SA-203 vehicle is scheduled to launch a liquid hydrogen experiment

and employs a generalized payload shroud in place of the Apollo command module,

escape rocket and tower. The SA-203 is approximately 16 m shorter than the Apollo-

Saturn IB configuration, and has a more nearly constant diameter. These geometric

features produce an entirely new flow field for consideration. The extensive separated-

flow field associated with the escape rocket and tower is gone, and a flow field con-

trolled by the biconic configuration of the generalized payload shroud is found in its

place.

The following sections describe the static load distributions used in the quasi-steady

analysis and discuss the flow field and pressure distribution over the forward portion

of the SA-203 vehicle and the resulting aerodynamic damping.

1-1
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Section 2

SATURN IB SA-203 ANALYSIS

The aerodynamic damping for the Saturn IB SA-203 vehicle was computed for the high-

dynamic pressure portion of the trajectory using the quasi-steady analytical method

(Refs. 1 and 2). The static-load distributions over the SA-203 were obtained through

analysis of all available data (Refs. 3 through 12). The distributions were reduced to

lumped loads that were further split into local and induced derivatives. Appendix B

documents the derivatives for 0-, 4-, and 8-deg angle of attack. Structural data for

the first three bending modes and the vehicle trajectory were obtained from Refs. 13

and 14, respectively. Identification (Refs. 15 through 17) and understanding (Refs. 18

and 19) of a flow field suspected to exist on the forward portion of the Saturn SA-203 is

documented in Appendix C.

2. 1 STATIC AERODYNAMIC ANALYSIS

The Saturn IB SA-203 vehicle with the generalized payload shroud (Fig. 2-1) is unlike

the Apollo-Saturn IB. The prominent separated-flow effects of the Apollo escape-

rocket and tower are not present. There was evidence (Refs. 15 through 18) that the

generalized payload shroud with its blunt biconic configuration could have considerable

dynamic destabilizing effects. Chevalier and Robertson (Refs. 15 through 17) measured

large changes in the loading on a cone-cylinder model caused by the sudden jump for-

ward of the terminal shock to the cone-cylinder shoulder. Because of this information,

there was concern that a similar interaction between the terminal shock and the sep-

arated boundary layer aft of the shoulder would cause drastic undamping effects to

occur on the SA-203.

r

Static pressure coefficient data (Ref. 9) used in the analysis of the SA-203 were sup-

plemented, at the request of LMSC, by additional pressure-distribution wind tunnel

(

2-1
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tests (unpublished MSFC wind tunnel Test 2328). These additional tests were designed

to document the sudden-jump phenomenon of the terminal shock. However, the tests

documented the complete absence of the sudden separation phenomenon. Briefly,

what happens is that the biconic shoulder of the generalized payload "preseparates"

the flow and the reattaching boundary layer on the conical frustum is strong enough

to negotiate the conic-frustum-cylinder shoulder without complete flow separation,

even when the terminal shock is in close proximity to the shoulder. As a resultthe

terminal shock moves smoothly along the cylindrical section with increasing angle of

attack, and large changes in normal force are avoided as well as the feared undamping

effects. Appendix C documents the complete analysis of the terminal shock-boundary

layer interaction on the SA-203 vehicle.

Analysis of the data from Test 2328 involved an unexpected complication. For this

test top centerline pressures were measured; both windward _nd leeward data were

obtained by pitching the model through an angle range of +10 deg. Presumably the

experimental setup was completely symmetrical in the wind-tunnel test section. How-

ever, the Mach number varied as much as 0.03 with negative angles of attack during

a rum That is, when pitching the model through positive angles of attack, the Mach

number held acceptably constant, but for negative angles of attack the Mach number

was noted to fall off, e.g., Run 16 at _ _ 0 °, M = 0.948 and at r_ _ -10 o, M =

0. 918. Because the SA-203 configuration is extremely sensitive to Mach number in

the range 0.80 _ M <_ 0. 95, considerable data manipulation (extrapolating, cross

plotting, and carpet plotting)was required before meaningful results were obtained.

The integrated pressure data (Ref. 9) were compared with total force data (Refs. 10

through 12) for the SA-203. Segmented-model force data were not available for the

analysis; however, the pressure model had rather dense pressure orifice locations.

The closely spaced orifices resulted in well-defined local normal force coefficient

distributions, so that the negative load peak after the conic-frustum on the cylinder

could be defined.

2-3
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Integration ofthe load distributions defined the 16 lumped-load derivatives for 0-, 4-,

and 8-deg angle of attack over the Mach number range of 0.7 -< M <- 2.0. Agreement

between the summed, lumped loads and the overall force data is shown in Fig. 2-2.

The force data from ReL 10 and 12 do not agree at high angles of attack (_ -> 8°), the

results of Ref. 10 being lower than those of Ref. 12. Because of this discrepancy,

both results have been considered for o_ = 8 ° and are shown in Fig. 2-2.

Also shown in Fig. 2-2 is the attached flow estimate at M -- 0.9. The attached flow

estimate was obtained by use of the transonic similarity parameter applied to the M =

0.7 static-load distributions of Ref. 9. The attached flow lumped-load derivatives

were then perturbed to account for separated-flow effects.

2.2 AERODYNAMIC DAMPING ANALYSIS

The biconic shoulder caused the flow to expand to supersonic speed and shock out at

M _ 1.4 for c_ >_ 0 °. (The shock causes the preseparation discussed earlier.) This

shock effectively filtered out the accelerated-flow effects (described in Appendix C)

as the flow conditions on the conical frustum become rather insensitive to angle of

attack (and angular rates). Thus, boundary layer build-up was the dominant viscous

effect, and the quasi-steady methods (Refs. 1 and 2) used on previous Saturn configura-

tions (Refs. 1 and 20 through 23) were applicable in unmodified form.

The damping characteristics of SA-203 are presented in Fig. 2-3 in percent of critical

for 0-, 4-, and 8-deg angle of attack over the high-dynamic pressure portion of the

ascent trajectory (0.7 <- M <_ 2.0). The bending-mode shapes were chosen from

Ref. 13 at time 60 sec and are shown in Fig. B-15. The trajectory was taken from

Ref. 14. The results of the quasi-steady computation show that the SA-203 vehicle has

positive aerodynamic damping for the first three bending modes in the Mach number

range of 0.7 to 2.0. Therefore, it is speculated that the vehicle will exhibit positive

damping over the entire ascent trajectory.

2-4
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In Fig. 2-3 the attached-flow values are shown as well as the perturbed values at

M = 0.9. Separated flow reduces the positive loading over the forward portion of the

vehicle, and for the first three bending modes, the perturbed damping values are,

therefore, lower than the attached-flow values. The first-mode damping curves are

less positive inthe transonic speed range for _ =0 ° and 8 ° than for a =4 ° • This is

because the nonlinear induced loads become smaller with increasing angle of attack

and the local loads peak near _ = 4 ° with the result that the total normal force

derivative is greatest at _ = 4° . The same trend is seen to a lesser extent in the

second-mode damping curves. In the supersonic speed regime the damping curves

are nearly independent of angle of attack for all three bending modes.

2-9
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Section 3

CONCLUSIONS

The Saturn IB SA-203 vehicle is not affected by the dramatic dynamically destabalizing

effects expected to be generated by the generalized payload shroud in the transonic

speed regime. The design feature that saved the vehicle is the biconic shroud. This

shroud configuration produces a strengthened boundary layer which can hold off flow

separation sufficiently so that jumpwise terminal shock motions with attendant large

undamping effects are avoided.

Careful study and analysis of the data for the SA-203 using quasi-steady analytical

methods indicate that the first three bending modes of the vehicle are aerodynamically

damped over the critical Mach number range from 0. 7 to 2.0. Therefore, it may be

speculated that the SA-203 will be aerodynamically damped over the entire ascent

trajectory.

3-1
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Appendix A

NO ME NC LA TURE

VARIABLES AND CONSTANTS

a

a,b

B

c

D

D

E

F(t)

f(t)

K

K

L 1

M

M

M A

m

N

P

speed of sound, m/sec

parameter defined in Appendix C, Eqs. (C. 51) and (C. 52)

parameter defined in Appendix C, Eq. (C. 36)

reference length or cylinder caliber (6. 5278 for SA-203), m

aerodynamic damping derivative

effective aerodynamic damping derivative [ see Eqs. (C.41) and (C.43)]

dissipated energy per cycle of oscillation, kgm

generalized force, kg

driving function, m/sec 2

aerodynamic stiffness derivative

effective aerodynamic stiffness derivative [ see Eq. (C.44) ]

boundary layer shape factor

Mach number (U/a)

pitching moment, kgm [ coefficient C m = M/(pU2/2) Sc]

axial force moment, kgm [ coefficient CmA = MA/(pU2/2)Sc].

generalized mass, kg-sec2/m

normal force, kg [ coefficient N/(pU2/2)S]

static pressure, kg/m 2 [ coefficient Cp = (p - p_ )/(pU2/2) ]
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q(t)

S

t

T

U

U

W

X

Xl

Z

O/o

,/

6

A

_s, _a

0

0c

V

P

normalized coordinate, m

reference area, m 2 (7rc2/4)

time, sec

period, see

velocity, m/sec

convection velocity, m/sec [ see Eq. (C. 17) ]

crossflow, m/sec

horizontal coordinate, m

axial coordinate, m

vertical coordinate, m

angle of attack, radian or deg

trim angle of attack, radian or deg

local crossflow angle, radian or deg

arc tan b (phase lag), radian

specific heat ratio (_ = 1.4 for air)

boundary layer thickness, m

incremental difference unit

structural damping, fraction of critical

aerodynamic damping, fraction of critical

body attitude, radian or deg

cone half-angle, radian or deg

Prandtl-Meyer expansion angle, radian

dimensionless coordinate Xl/C

density of air, kg sec2/m 4

A-2

LOCKHEED MISSILES & SPACE COMPANY



M-37-66-2

¢

normalized modal deflection

normal mode slope, 1/m (_)q_/3x)

phase angle, radian (cot)

free-free bending frequency or rigid-body pitching frequency,

radian/sec

SUBSCRIPTS

a

A

AC

b

CG

d

e

i

L

N

n

O

O

P

S

1,2

attached flow

due to axial forces

aerodynamic center

buffeting

center of gravity

discontinuity

local external flow

induced, e.g., _i = induced angle of attack controlling

the separation

at large

nose

body force number

at_=o

at _ close to zero

p_-effect

separated flow or shock wave

body force components (used in Appendix C)

undisturbed flow
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5-effect

number of lumped-load derivatives (see Fig. B-l)

SUPERSCRIPTS

i induced, e.g., Ai C N = separation induced normal force coefficient

DIFFERENTIAL SYMBOLS

v,(x) = Ox

dC N

CN - dot
oz

8C N
C N .

q 8 q
U

8C
C m

at 6 = constant

at p_ = constant
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Appendix B

DOCUMENTATION OF SA-203 LUMPED LOADS

The static-load distributions over the SA-203 vehicle have been defined for several

Mach numbers and angles of attack. The loadings at nonzero angles of attack were

examined closely because of the expected unsteady flow discussed previously and in

Appendix C. The summation of these results is shown in Fig. 2-2. This appendix

presents, as a function of Mach number, the individual lumped-load and axial-force-

moment derivatives for 0-, 4-, and 8-deg angle of attack. Also included are the

separated flow velocity ratios and the first three bending mode shapes used in the

analysis.

Figure B-1 relates the lumped loads to the general SA-203 force distribution. The

= 0 ° local and induced components of the lumped-load derivatives are plotted in

Fig. B-2 and B-3. Figure B-4 presents the velocity ratio for each of the separated-

flow regions, and Fig. B-5 shows the local and induced axial-force moment derivatives

on the nose shroud and the interstage flare. The lumped-load centers of pressure are

given in Fig. B-6. Both the attached flow and induced-load centers of pressure are

shown near Mach = 0.9. The various parameters discussed above are presented in

Fig. B-7 through B-10 for _ = 4 ° and in Fig. B-11 through B-14 for _ = 8 ° . Figure

B-15 shows the first three bending mode shapes of the SA-203 vehicle.
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Appendix C

AEROELASTIC EFFECTS OF BOUNDARY LAYER-TERMINAL
SHOCK INTERACTION

C. 1 INTRODUCTION

Slender cone-cylinder forebodies usually do not cause the aerodynamicist or dynamicist

any problems. However, there is one somewhat frustrating exception. If a launch

vehicle during the subsonic portion of its ascent reaches appreciable trim angles of

attack (e. g., due to gusts) aeroelastic instability may result even for payloads with

cone half angles below 15 degrees. The flow phenomenon responsible for this was

first discovered by Robertson and Chevalier (Refs. 15-17). They discussed, however,

only the buffet input, i.e., the forcing function, and did not concern themselves with

the other half of the problem as it presents itself to the aeroelastician. That is, they

did not consider the vehicle response. The gross bending response of the vehicle is

not critically dependent upon the buffet input per se, but rather on the aerodynamic

undamping caused by the separated flow pattern that produces the buffet input.

C. 2 STATEMENT OF PROBLEM

Reviewing the experimental data obtained by Robertson and Chevalier (Ref. 16), the

following distinct characteristics are found. At high subsonic speeds a terminal shock

appears downstream of the cone-cylinder shoulder causing local boundary layer

separation (Fig. C-l). When the angle of attack is increased to 4 degrees, the leeward

side separation jumps forward to the cone shoulder. The tremendous jumpwise load

change can best be appreciated by comparing it with the pressure change when the

angle of attack is increased from zero to _ -- 2* . It is easy to see that this load will

not change the rigid body moment (aft C.G. ) as much as t he bending moment of the

elastic body (forward node). This jumpwise load change poses the most serious
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aeroelastic problem, as will be demonstrated later. The jump to complete leeward

side flow separation occurs at higher angle of attack the more slender the conical

forebody is (Fig. C-2).

Figure C-3 shows another characteristic of the interaction between the terminal

shock and the boundary layer. The leeward side shock moves forward of the windward

side shock creating a negative cylinder load. This loading also has an adverse aero-

elastic effect, as will be demonstrated, but it is insignificant compared to the jumpwise

load change. The terminal shock moves back with increasing Mach number and with

increasing cone angle (Figs. C-4 and C-5). In Fig. C-6 the opposite effects of

increasing Mach number and increasing angle of attack are illustrated using a carpet

plot (Ref. 24).

Assuming that the terminal shock strength is unchanged for small changes in angle of

attack the shock-boundary layer interaction will only be governed by how the approaching

boundary layer is affected by forebody crossflow and external flow velocity gradient.

On the leeward side, an increasing angle of attack will produce an increasingly thick

boundary layer as well as an increasingly adverse pressure gradient. The consequently

weakened boundary layer profile cannot negotiate the pressure jump through the shock.

Hence, the shock moves forward to a location where the boundary layer is strong enough

to accept it (Figs. C-3 and C-6). In proximity to the cone-cylinder shoulder no such

location can be found, and the shock jumps all the way forward to the shoulder causing

the sudden and complete flow separation on the leeward side.

In the unsteady case both the boundary layer build-up and the external flow velocity

gradient will be affected by the body pitching or bending (only one degree of freedom

motions are analyzed here). The unsteady effect of boundary layer build-up has been

described earlier for flare-shock induced boundary layer separations at low supersonic

speeds (Ref. 2) The effect of velocity gradient changes through body pitching, the
,

accelerated flow effect, requires, however, its own treatment.

For the geometries considered in Ref. 2 the accelerated flow effect is negligibly small
compared with the downstream time lag effects in the crossflow influence on the
boundary layer.
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The pressure gradient of the external flow at the edge of the boundary layer is given

by the complete Bernoulli equation

1 aPe 0Ue aUe
- + U

Pe axl 0t e ax 1
(c. 1)

x 1
Or with g = c (c = reference length, e.g. cylinder caliber)

c aUe ]

_ : -PeCeIaVeffe+-_- j
(C. 2)

For constant vehicle velocity, U
e

Thus,

changed only through body pitching or bending.

ap e

= -Pe Ue a Ue c& + ._.__
Oc< Ue J

= -Pe _ U===- Pe _=_
e

i) ee l)

aPe aPe c& OPe
-- _.=

O_j aa U e O_
(C. 3)

That is,

OPe c&

O_ U
e

(c.4)
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or,

aCpe aCpe Pe c&

=0 e

(c.5)

For Prandtl-Meyer expansion, 0 Cpe/Oa is obtained as

_%_ _ _o-_)_(_ p_ _.iaez Oc_ T M 2
2 oo

(C. 6)

i* eo ,

_O'e (_e_2 _)-_"0_ : - _,Mooj(_o-

e, g_ ,

' _"-_ ]M =/2
e

Thus, the body pitching (or bending) motion, c_/U > 0, will decrease the pressure

gradient _ Cp /_} and will, therefore, delay the boundary layer separation. That is,
e

the separation will in the unsteady case lag behind its static or steady-state position.

This lag, added to the lag in the boundary layer build-up, makes the separation have

opposite effects on static and dynamic stability, and accounts for the sometimes

drastic effect of the separation on vehicle dynamics.
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C. 3 ANALYTIC APPROACH

Quasi-steady methods are used to compute unsteady characteristics by use of experi-

mental static characteristics (Ref. 2). The treatment of the boundary layer build-up

effect in Ref. 2 is directly applicable to the present case. The quasi-steady means

that accounts for the accelerated flow effect will be derived here.

Generally, the separation induced loading is determined solely by the shock motion.

The shock strength remains constant within the approximations used here to compute

first-order effects of the shock perturbations. The effect of body pitch on the external

flow pressure gradient is given by Eq. (C. 4) or Eq. (C. 5). If the static force induced

by a change in the pressure gradient were known, the unsteady force induced through

the accelerated flow effect could be computed also. That is,

• = _AiCN aP_ c& (C.7)
c& u

A_CN (P_) _P_ 0 _-- e

e

where, from Eq. (C.4)

c_ c_ - aoL

e e

(c. s)

AiCN results from the shock pressure increase AC acting over the projected area
Ps

_/4 • c - (_Swindward - }Sleeward ) c. With the reference area S = _c2/4 the

derivative a AiCN/ap_ becomes simply

_AiCN a_
- AC s

ap_ Ps ap_
(C. 9)
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Static experimental data can provide the sought derivatives, but not without considerable

manipulations. The difficulty is to decouple boundary layer thickness effects, 5-effects,

effects of external flow pressure gradient, p_-effects. All 5-effects are treatedand

in the manner described in Ref. 2. How the p_-effects are to be treated will be

described.

One needs essentially to determine what the pressure gradient and shock position

would have been in inviscid flow before one can differentiate between 6- and p_-effects.

The derivatives obtained directly from static experimental data include viscous effects;

even with the assumption of constant shock strength the following multidependence

still exists.

d_ s 0_s + s dp___ (C, 10)d6

da 06 da 0p. d_

d6 a6 dWAc a6 dp_

da - a wAC da + _ap_ d-'-a"
(c. 11)

da = . 36 d--_
mviscid

(C. 12)

Even when aS/ap_ in Eq. (C. 11) is neglected, which is permissible within the frame-

work of first-order effects sought here, the necessary separation of variables requires

rather extensive analysis. The results of such an analysis (Ref. 18) will be discussed

briefly.

*w is the crossflow at the aerodynamic center upstream of the shock position.
T_a_ is, forebody crossflow effects on the boundary layer build-up are lumped in
the manner described in Ref. 2.
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C. 4 TERMINAL SHOCK AERODYNAMICS

The viscous effects, i.e., the effect of the boundary layer separation, is to move the

terminal shock forward from its position in inviscid flow (Fig. C-7). This effect is

largest at M = 0.88 and increases with increasing cone angle 0 . When the shock
C

moves closer to the cone cylinder shoulder with decreasing M (Fig. C-8), the effect

of the boundary layer build-up, the 5-effect, decreases and has disappeared at
,

M = 0.86 (for 20 ° cone angle) . The shock movement is then determined only by the

changing external flow pressure gradient represented by DA_s/a0 in Fig. C-8. The
C

force derivative induced by this shock movement is shown in Fig. C-9, as obtained by

use of the shock pressure jump ACps and an equation equivalent to Eq. (C. 9).

That is,

(C.13)

_ = ACps _ /p_

(C.14)

The derivative dp_/dO c can be obtained (Ref. 18) and, thus, (aAi_ /_(p_) _ can be

, s )determined. The results are shown in Fig. C-10. For high cone angles (. _)s/D_
5

can apparently be obtained directly from static data. However, the boundary layer

build-up effect (0(P()s/0_)lu_ completely cancels the inviscidpressure gradient

effect for slender cones, l_ahdtl-Meyer expansion over-estimates the derivative

(a(p_)s/OO_) by 10 to 20 percent.
5

*The 20 ° cone-cylinder body provides the more detailed information of the bodies
tested in Ref. 16, and is therefore used here as the typical body.
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When the shock approaches the cone-cylinder shoulder it will suddenly jump all the way

forward to the shoulder. The cause is the weak boundary layer resulting from the very

steep adverse pressure gradient at the shoulder. This is well illustrated by use of the

boundary layer shape parameter, as was done by Robertson and Chevalier (Ref. 16 and

Fig. C-11). The 30 ° cone-cylinder illustrates how the leeward side on the 20 ° cone-

cylinder would appear at a moderate angle of attack. Their further research (Ref. 17)

revealed that the flow could alternate between retarded shock induced separation and

complete separation. Their results, shown in Fig. C-12, indicate that this jump from

one flow condition to another could occur for a fixed model (within sting stiffness

limitations) in a large M - c_ - region. For the blunter nose cones, only the windward
oo

side had this alternating flow; on the slender 15 ° cone -cylinder body, only the lee-

ward side had it.

If the cone-cylinder body is describing pitch oscillations, 0(t), around a certain trim

angle of attack, So, the motion of the terminal shock can be described as follows,

using quasi-steady methodology. (See Fig. C-13, Sketch 1.)

With U(Moo ) constant

_s(t) = _s(C_o ) + (_s). (_o + 8(t)) + Ai_s(t)
Inv.

P_

*as(t) + Oa/5

(C. 15)

_AC(t - At) = 0(t - At) + (_AC - _) cyst;_'
At)

U

_s(t) = O(t) + (_s - _) c_(t)u

} i

(C. 16)

*Only Ai_s(t) is of interest here, as the inviscid shock position is assumed to adjust
instantaneously to 0 and can be included in the attached flow characteristics.
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For slow oscillations [ i. e., for rigid body oscillations and bending oscillations in

third or lower bending modes (Ref. 5)]

_AC(t - At) = 0(t) - At0(t) + (_AC - _) c_(t)u

(C. 17)

At = (_S - _AC ) c/_

U _ 0.8U [ Convection velocity in turbulent boundary layer at subsonic and transonic

speeds (Ref. 25). ] Thus Eq. (C. 15) becomes

 i:s(t):\ :/
P_

- _AC ) +

(C. 18)

aAi_ s

aC_-
U P_

+

1.25 (_s - IAc ) + _- IAC]

(_s- :) +\..j_ ('e)
(C. 19)
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A iCN _ = ACPs A t_s o (C.20)

When the adverse pressure gradient at the intended shock position exceeds a critical

value, the shock jumps all the way to the cone shoulder. The critical value can be

expressed in the following form:

In the static case,

d_ / crit = P_s (acrit)
(C. 21)

In the unsteady case, a higher angle of attack, acrit + Ap acrit'

due to the accelerated flow effect on the pressure gradient; and

( dps (C_crit) + \ _ ApC_crit
\ d_ crit = P_s 5

can be reached

+ /6 (Ue)s

That is,

Ap _crit

O(P_)s) (Ue) s
6

cA (C. 23)
U

For the blunter nose shapes, this comprises all the delay, as the 5-effect goes to zero

near the nose ( Fig. C-8). For more slender nose shapes, however, the boundary layer

build-up also has an effect. If the 5-effect was solely responsible for the jump to
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complete separation, the delay for the pitching body would be determined simply by the

time lag At in the boundary layer build-up. That is,

d5 _ ( t - At) (C. 24)(Ss) = 5(ao) +_--_ - aAC
crit

where

At = 1.25(}S- _AC ) c/U

That is,

A5 (Xcrit {1"25(_s-_AC) + _ _AC] c0= - -_- (C. 25)

Using the shock motion sensitivity to 5- and p}-changes

total delay Aacrit may be expressed as follows:

A C_crit
dAles P °Lcrit + dAi(s

d_ dff

( Fig. C-8 ) as a guide, the

A5 acrit (C. 26)

and, through Eqs. (C. 23) and (C. 25),
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_ crit 25(_ s

dol

+
avL ]6

faAi_ S_

dAi_ U
s

dol

(C. 27)

C. 5 VEHICLE DYNAMICS

The equation of motion of the elastic vehicle describing single degree-of-freedom

bending oscillations can be written as follows, using standard notations:

The generalized force

forces on the vehicle.

[_l(t) + 2_Wdl(t) + w2q(t)] ' = F(t) (C.28)

F (t) is given by the virtual work done by the aerodynamic

fdN fd M AF(t) = _-_ q_(x)dx + j_ _o'(x)dx
(C. 29)

Only the force F (t), induced by the terminal shock-boundary layer interaction,
S

needs special consideration.
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Fs(t) = pU22 S AiCN(t )¢(Xs)

AiCN(t) = ACps Ai_s(t)
(c. 30)

AI_s (t) is given by Eq. (C. 15) where for the elastic body (See Fig. C-13, Sketch 2),

the following holds:

~ z
Q

a=O+ U

z = -@(x)q(t)

0 = _p'(x)q(t)

(c. 31)

Thus, Eqs. (C. 15) through (C. 17) transform to

A*6s(t)

(C. 32)

Substituting

xI = c_ = x° -x
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the corresponding generalized force becomes:

Fs(t ) pU2 S ACps (_s)= 2 Al_s (t) ¢ (C. 33)

or

Fs<t>= s[Ksq<t>+os ]

[/
,p(_s ) aA_s\

Ks = _ ACpsl t _ ) (_AC) + • }/°_"A

+

+ 1.25 (_AC

(C. 34)

U/U e = (M /Ms)(1 + _- 12 M2s)l//2(1 +-T--_-M22 _o)-1/2

For attached flow the generalized force may be expressed similarly as

Fa(t) = pU2S[Kaq(t) + Da"U_]2
(C. 35)
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Combining Eqs. (C. 28), (C. 34), and (C. 35} gives:

}_(t) + 20) _ 2wu(Ds + Da) el(t) + o)2 1 - (K s
03

+ K)] q(t) = f(t)

B = pU2 S/_ (C.36)
2

f(t) = Fb(t)/r_ ; Forcing function, e.g. buffeting forces

C. 5.1 Aerodynamic Damping

One requirement for stability is that the amplitude I q(t) I is bounded; i.e., does not

increase with time beyond all bounds. This implies that the coefficient for cl(t) in

Eq. (C. 36) cannot be negative, i.e.,

- (B/2wU)(D s + Da) _ 0 (C. 37)

In presence of a forcing function, f(t), the requirement of limiting the amplitude to

a certain value gives

- (B/2wU)(D s + Da) -> [min (C. 38)

D s and D a are the aerodynamic damping contributions from separated and attached

flow regions, respectively. They correspond to the damping derivative for a rigid

body, a negative value indicating damped oscillations. The multiplication factor

-B/2wU brings the aerodynamic damping in the same form as the structural damping.

Thus, the damping contributions from the separated and attached flow regions have the

following ratios to the critical damping:

_s = - (pUS/4w_a) D s

_a = - (pUS/4wn_) D a

(C. 39)
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Using the 20 ° cone cylinder data (Figs. C-8 through C-10), the SA-203 vehicle would

experience the undamping effect ( _s ) shown in Fig. C-14, when oscillating in its

second bending mode.

C. 5.2 Nonlinear Damping

When accounting for the dynamic effects of the jumping between retarded shock-induced

separation and complete separation, special techniques are needed. The damping as

defined by Eqs. (C. 34) through (C. 39) is valid only for infinitesimal amplitudes, or

for finite amplitudes only for linear aerodynamic characteristics. For nonlinear

characteristics a measure of the damping at finite amplitudes can be defined as

follows (Ref. 26).

Let D be the constant describing the energy dissipation ( E ) during one cycle of

oscillation (period T ).

t +T t +T
O O

E = f Fs(t) dq = f Fs(t)_ldt

t t
O O

t +T
o

2
t

o

CN(t) _o(_ s) (t dt

t +T
O

I -
t

o

(C. 40)
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That is

m

D

t +T
O

J
t

o

CN(t) _o(_ s) _l dt

t +T
O

f (_2 dt

t
O

(C.41)

For harmonic oscillations, q = [ q l sinwt, where [ q l = Aq and w are assumed

constant during one cycle of oscillation, D = D (_) can be expressed as follows :

w

D

t +T
o

I
t

0

CN(t )¢(_) Aq COS cotwdt

t +T
o

U
t

0

2
Aq COS wt o)dt

_o+2_

I CN(¢) (p(_) cos ¢ de

U

¢o+2_

f 2
cos ¢ d_

(C.42)

i.e., the effective damping b is

_q
U

@o+2_

I CN(¢ ) cos ¢ d_b

C-17
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where _ = wt, 2_ = _T.

The effective aerodynamic spring K can be defined similarly as follows:

Aq Aq

f CN(q)_(_s )qdq = f Kqdq
0 0

i. e.

_ 2_(_s) Aq

K = _ f CN(q) qdq
(Aq)2 o

(C. 44)

The nonlinear characteristics associated with the jump to complete separation can be

represented as follows: (Fig. C-15, Sketch 3 ).

Both CN1 and CN2 can be written:*

C N =

C N oz ; IoLI -< Olcrit

0L o

CN_LC_ +ICN_o - CNaLI _crit + a ACNd; Iczl >c_critlal

(c.45)

or, with

CN = CNc_ I°z° + q_'(_)q] + CN'q_U + CNo (C.46)

*Only characteristics close to acrit are of interest, allowing use of linear character-
istics with a discrete step. No static hysteresis effects are included here (see Ref. 26
for hysteresis effects} as the data do not indicate such a possibility (e. g., see Fig. C-12}.
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CN=

o qo

IZil d
;I _i [ > _crit

(C. 47)

The step ACNd (negative for CN1 and positive for CN2 ) occurs when the separation

moves to the cone-cylinder shoulder. For the 5-effects, this event is guided by the

crossflow at }AC " For the p_-effects, it is guided by the crossflow angle at the

shock, }s " The 5- and p}-effects can be separated as indicated earlier [Eq. (C. 26)].

For both effects, the guiding angle a i can be written*

= + (p'(_s) q(t) - (C.48)_i (t) s o A_crit

where for the 5- and

A 5 C_crit =

P_-effects, respectively,

_(_AC) fl + 1.25 (_s -
L

c(P'(_AC) ]

AC) J±u (C.49)

%_ _crit = (P(_s)

o_/
5 U c_'(_s)

a(P_)sl (u e)

¢(fs )
-q (c. 50)
U

That is, Aacrit can be written

A_crit = a U (C. 51)

*Any local delay in realizing the force change after
reached is neglected.
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For harmonic oscillations, q = Aq sincot

_i _o + ¢'(_s) Aq sin wt wAq cos wt= - a U

= + ¢,(_s) Aq[sinwt a cw ]C_o e_0'(_s) U cos cot

i. e,

~ Aq _p,(_s)
= + sin (¢ - /3)_i C_o cos

a . w_._c
tanfl = b =

c(p'(gs) U

_b = ogt

(C.52)

The variation of _i during one cycle of oscillation is described in Fig. C-15,

sketch 4, and Eq. (C.53) below:

_o - _crit

sin _bI = Aq¢'(_s ) cos/3

+
Ceo _erit

sin ¢2 = Aq (p'(_s) cos/3

(c.53)

D is then given by Eqs. (C.43), (C.47), and (C. 53):
s
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= ¢(_)
s aq ___c_c

c U _-¢i
_-¢2

(¢) COS _d_ +

_+_+_1

CNL (¢) cos _bde

+

_+_+_

fCNo (@)cos ¢ de
+

_"-fl+ ¢1
}

CNL!¢) cos _ d_

r+_+_ 2

C N (_) = CN
O

O

[_O + ¢'(_s ) Aq sin ¢] + __._cAq CN"U c
%

cos ¢

C N (¢) = C N
L.

otL

[OL o + ¢,(_s) Aqsin_] + __CCuAqc CN.

qL

+

ICN_o

cos ¢

1

(_crit + i_i-'-_ _'cNd
(C.54)

The integration gives the following result:

-- ACNdDs 1 1 2b

q_(_----_= CN. 7r _ wc b2
qL c -U-'1 +

+

(.___o ?_ OCcrit_ 2 ./b 21 +

- \ Aq¢'(_s ) ] + vl

Cs°.

qo
- CN."

arc sin

+
Go _crit

Aq q_'(_s ) _f_ + b 2

- arc sin
C_o - _crit

Aq ¢'(_s)_fl + b 2
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2 ICNolo

_o - _crit
m

Aq _'(fS)

{__.9o + (_crit -2b 2+
- k Aq cp'(_ s) /

- - k

U 1

b 3

+ b2)2

2

+ b2 _ ( aO_-q_,(-_s)- acrit )

!
_o - _crit -/1

Aq ¢'(_s ) V (c. 55)

In the quasi-steady analysis, it is implicitly assumed that (wc/U) 2 << 1 which, in

general, also makes b 2 << i . For the elastic vehicle, the amplitudes will rarely be

large enough to catch both jumps, i.e.,

olo + Otcrit [ I°_o - acrit

is larger than unity and either @2 = 7r/2 or ¢1 = zr/2 . Assuming a o > 0,

Eq. (C. 55) becomes with the above assumptions :

D
S

_(f)

CN. + CN. ACNdqo qL 2 b

2 7r Aq ¢o_._cc
c U

CN. - CN. [

qo qL /arc sin (rVo - C_crit _ 2
s° - acrit a° - acrit 1 -

Aq _'(_s ) + Aq (p'(_s) _-q_a_ s) ]
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where,

b/-_ = a/c q'(_s)

= ,p(_s ).

+ 1.25 (_s
Cq"(_AC) ]

_AC) _ ]: 5-effect

: P_-effect

(C. 56)

When n ° = acrit , i.e., when the jump effects are maximum,

(Ds)
max CN_Io + CN. ACNd }

qL 2a
(P(_) 2 _ Aq _,'(_s)

(C.57)

Returning to Fig. C-13, Sketch 2, Aq@' (_s) can be expressed as

Aq (p'(_s)= (c. 58)

io eo

¢'(fs )

Aq ¢'(_s) - @'(_N ) A0N
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A0 N is the angular amplitude at the nose. Equation (C. 57) thus becomes:

CN. CN.

qo qL --

(Ds)ma x = go(_)_ + go(_) _ + A(Ds)ma x

A(Ds)ma x

ACN d2 # (_N)

AeN a__¢_

¢(_AC) + 1.25 (_AC - _s ) a_ (_AC) ;5-effect

8a ]6 U ; p_-effect

go(_s) +/a(P_)s)5\ _.__ 8_'_ (_s)(Ue--_s

(C.59)

CN_lo are given by Eq. (C.34) as D for a < andgo( _ ) and go( } ) CN,qL s C_crit

a > _crit' respectively. At a > acrit, the leeward side is completely separated

(imbedded in "dead air"), and its contribution to the damping is negligible compared to

the windward side attached flow contribution. That is,

1

= 2 (Ds)(_ >_crit _ 0 (C. 60)
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The contribution for (_ < acrit is

1

= 2 (Ds)_<_crit
(C. 61)

where (D s)a<acrit is given by Eq. (C. 34) .

Thus, the total separation induced contribution to the damping can be expressed as

follows when using Eq. (C. 26) to relate 5- and p}-effects:

1 + Al(_S)ma x + A2(_S)ma x(Ds)ma x = _ (Vs)_<_crit

(Ds)(_ <_crit = -q_(_s ) ACps

+

(_AC)]_ _--_/ [¢(_AC) + 1"25(_AC - _s) a_

P_
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-- 2
An,Ds_max- "_ , = _

/ a_i_ s

dAi_ s

doz

1 + 1.25 (_AC

+

I aAi 

d_i_
S

dol

_-_ (_s) M_o

_v(_ s) M s
2

(C. 62)

(D s)c_<acri t is positive and contributes undamping [ _s ~ -Ds ' Eq. (C. 39)] as was

illustrated in Fig. C-14. Al(Ds)max is determined in sign entirely by A 1 CNd, as

the nodalpoint is well downstream of }s" Hence, as AICN d < 0 (Figs. C-2 and

C-15, Sketch 5), A1 (Ds)max is positive, i.e., indicative of undamping. The mag-

nitude of the undamping ratio to critical damping [Eq. (C. 39)] is inversely proportional

to the nose amplitude A0 N . When the nodal point is downstream of _ 2 ' the sign of

A2(Ds)max is also determined only by A 2CNd, and as A 2CNd > 0 (Fig. C-2 and

Fig. C-15, Sketch 3)the contribution A2(Ds)ma x is then damping. However, when

the nodal point moves upstream of }2' also A 2 (Ds)max may contribute undamping.

*n = 1 or 2.

C-26

LOCKHEED MISSILES & SPACE COMPANY



M-37-66-2

The separation-induced elastic body damping in percent of critical (_s)a<a crit

and (A_s)min, is obtained by applying Eq. (C. 39) to Eqs. (C. 34) and (C. 62),

respectively. The damping derivative ( Cm_ ) and ( AC_ ) for rigid
s c_<acrit max

body oscillations around }CG = _ is obtained by using the rigid body mode, i.e.,

1

Iq(t) = O(t) • c

(C. 63)

where

_O =

0 (t) is the body attitude perturbation from the trim angle of attack

C_crit for (ACm_)max ]"

0

C. 6 DISCUSSION

The effect of the shock-boundary layer interaction on the aeroelastic stability at

< acrit is very modest, causing slightly decreased damping ( Fig. C-14). The

effect at a = acrit is, however, appreciable (Fig. C-16) and may cause concern

especially in regard to aeroelastic stability, where the allowable nose amplitude

A0 N is small. Figure C-16 shows (Z_S)min for a Saturn booster in its second bending

mode. The actual payload is the 25 ° -12.5 ° biconic nose shown. Using 20 ° cone data

(Refs. 16, 17) the (A_s)min due to accelerated flow effects alone would be as shown.

This would represent the total effects at acrit < 0, where the boundary layer buildup,

the 5-effect, is negligible. The loading caused by A0 N corresponds roughly to the

static loading at an order-of-magnitude higher angle of attack (astat _ 10AON ) " At

acrit > 0 the 5-effect becomes dominant and greatly aggravates the undamping effect

(Fig. C-17). For 0.25 degree nose amplitude the undamping increases from -0.5

= 4 ° That there are reasons forpercent at _crit < 0 to -1.5 percent at acrit

concern is obvious. 0.5 percent is a rather typical value for the structural damping,

and A0 N = 0.25 ° is probably a representative value for the allowable nose amplitude.

The effect of mode shape is shown in Fig C-18, where the damping has been normalized
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to the same generalized mass (that of the second bending mode, m 2 ) • The first

bending mode is less affected than second and third modes. The rigid body mode

with its more aft node, the body C. G., would be even less influenced than the first

mode.

Experimental verification of this undamping effect is hard to come by. Data obtained

at the NASA Langley Research Center on an 8-percent elastic model of the Saturn I

booster (Ref. 27 ) indicate the probable occurrence of this phenomenon (Fig. C-19 ).

The 12.5 ° Jupiter nose cone by itself would not have experienced any complete

separation at reasonable angles of attack. However, the presence of the downstream

conical frustum with its adverse effects on the forebody pressure gradient is very

likely to cause the sudden complete separation to occur. This would then account for

the large drop in damping at M = 0.9 for positive angles of attack. A more direct

verification of the discussed adverse dynamic effects of the "sudden separation" is

provided by dynamic wind tunnel tests of rigid cylinder-flare bodies (Ref. 26 ).

Figure C-20 shows the effects of the jumpwise change of flow pattern. Even at the

employed amplitudes of above 4° the effect of catching the jump are drastic. The

separation-induced load change on a cylinder-flare body with a hemispherical nose

(Fig. C-21 ) shows great similarity with the slender payload phenomenon (Fig. C-1 ).

The associated undamping effect (Fig. C-22 ) was largely due to the induced flare load

with its additional time lag effect (Ref. 26 ) (the time delay before the separation

affects the flare after it has taken place locally at the nose}. The accelerated flow

effect was neglected on the cylinder-flare bodies (Ref. 26). However, the accelerated

flow effects may well have been non-negligible and could provide a more plausible

explanation than the shown 1° static a-hysteresis ( Fig. C-20 ).

It is certain that the "sudden separation" has a greatly undamping effect, and that the

effect could be catastrophic on an elastic vehicle (if the separation is caught, that

is). If one considers this effect catchable only at discrete a-M -combinations,

represented by the boundaries shown in Fig. C-12, then the probability of an aeroelastic

catastrophe is small indeed. However, in the regions of alternating flow, shown in
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Fig. C-12, the random separation occurrence for a fixed model (Refs. 15 and 17),

does not preclude the possibility that an oscillating model would drive the separation.

It is not unlikely that the alternating flow described by Chevalier and Robertson is

nothing but a body flow response to a random disturbance at s o = Gcrit ' e.g., a

tunnel flow disturbance. In that case, the regions shown in Fig. C-12 would repre-

sent the aeroelastic danger zones, making the problem a great deal more real.

In view of what has been shown so far, it is understandable that the so-called generalized

payload on Saturn IB SA-203, the 25 ° -12.5 ° biconic nose shown in Figs. C-14 and

C-16, was regarded with suspicion and anxiety. However, careful testing failed to

show the occurrence of this disastrous "sudden separation." The shadowgraphs in

Fig. C-23 reveal why. The first shoulder or cusp between the 25 ° cone and the 12.5 °

conical frustum causes the boundary layer to separate ahead of the conical frustum

cylinder shoulder, and the reattaching boundary layer is strong enough to negotiate

the cone-cylinder shoulder. This beneficial effect of "preseparation" of the boundary

layer has also been observed on blunt nose shapes. Figure C-24 shows two nose shapes

with the same Newtonian fore-body drag. The elliptical nose has extensive separation,

starting at the nose-cylinder shoulder. The flat-face nose with elliptic shoulder fairing,

however, has almost no separation. This is again the effect of "preseparating" the

boundary layer at the flat face-elliptic fairing juncture. The long elliptic fairing

allows the boundary layer to reattach before the cylindrical section, and the boundary

layer is able to negotiate the nose-cylinder juncture without extensive separation.

The pressure distribution over the forebody of the SA-203 vehicle varies with angle

of attack as shown in Fig. C-25, The additional feature compared to the cone-cylinder

data discussed earlier is the 25 ° cone -12.5 ° frustum shoulder. The flow expands to

supersonic speeds at this shoulder and then shocks out at a Mach number of roughly

1.4 for _ _> 0. That is, the conditions on the 12.5 ° conical frustum are relatively

insensitive to positive angles of attack, indicated by the "bend up" of the p ( _ ) = f ( _ )

curves for _ > 0. This obviously will decrease the "accelerated-flow effect", and

ff it was insignificant on the cone-cylinder bodies ( Fig. C-14 ), it certainly
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will be negligible on the SA-203. That is, the methods derived in Refs. 1 and 2 are

sufficient to describe the aeroelastic characteristics of SA-203. Figures C-26 and

C-27 illustrate the effect of Mach number on the flow over the forward portion of the

cylinder (Saturn IV B stage ). The aft movement of the terminal shock with increasing

Mach number is very pronounced, as was the case on the cone-cylinder bodies. The

distinct difference between the double-cone and simple-cone forebodies lies in the

- effect. Figure C-28 shows that the terminal shock after the biconic payload

moves practically all the way up to the shoulder without causing complete flow

separation. This is, of course, the beneficial effect of the "preseparation" at the

cone-cone shoulder discussed earlier.

C. 7 CONCLUSIONS

A conical payload, even with a half-angle of 15 ° or less, can have two kinds of aero-

elastically destabilizing effects at high subsonic speeds. One is a commonly occurring

linear, moderately undamping effect caused by the continuous interaction between the

terminal shock and the separating boundary layer on the booster just aft of the cone-

cylinder juncture. The other is a rarely occurring nonlinear, immensely undamping

effect caused by the discontinuous load change effected by a sudden jump forward of

the flow separation to the cone-cylinder shoulder.

The so-called generalized payload on vehicle SA-203, i.e., the 25 ° - 12.5 ° double

cone, effectively eliminates the dangerous "sudden separation" and also reduces the

"accelerated-flow effect." That is, the generalized payload has indeed general usage

and the demonstrated beneficial effects of preseparation should be kept in mind when

considering other payload shapes, e.g., hammerhead payloads.

C-30

LOCKHEED MISSILES & SPACE COMPANY



M -37 -66 -2

C
P

0.4

0 _ C O

V-0.4

-1.2

0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

] f TOP CENTERLINE PRESSURE MEASURED
II

POSSIBLE FORWARD NODAL POINT FOR
SECOND OR HIGHER BENDING MODES

Fig. C-1 Aerodynamic Characteristics at Moo = 0. 89 of a 20 =

Cone-Cylinder Body With Separated Flow
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M, = 0.89, a = 00 

M, = 0.89, a = 2 O  
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Mw - 0.89, Q - 4O 

Fig. C-1 Aerodynamic Characteristics at M, = 0.89 of a 20" 
Cone- Cylinder Body With Separated Flow (Cont. ) 
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Fig. C-2 Effect of Cone Angle on Occurrence of Complete

Flow Separation at Moo = 0.89
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Fig. C-3 Effect of Angle of Attack on Terminal-Shock Location

on a 20 ° Cone-Cylinder Body at Moo = 0.95
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Fig. C-3 Effect of Angle of Attack on Terminal-Shock Location on a 
20" Cone-Cylinder Body at M, = 0 . 9 5  (Cont.) 
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Fig. C-4 Effect of Mach Number on Terminal-Shock Location

on a 20 ° Cone-Cylinder Body at c_ = 0
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Fig. C-4 Effect of Mach Number on Terminal-Shock Location on a 
20" Cone-Cylinder Body at CY = 0 (Cont . ) 
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Fig. C-21 Effect of Complete Leeward-Side Separation on Pressure and Load
Distribution Over a Hemispherical-Nose,Cylinder-Flare Body at
Moo = 0.95
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Fig. C-22 Dynamic Effects of Separation-Induced Pitching-
Movement Discontinuity on a Hemispherical-Nose,

Cylinder-Flare Body at M = 0.95

C-55

LOCKHEED MISSILES & SPACE COMPANY



. 

M-37-66-2 

= 16" 

a = 8" 

a = o  
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Fig. C-24 Shadowgraphs at M, = 0.65 of the Flow Over Two Blunt-Nose, 
Cylinder-Flare Bodies With Identical Impact Nose Drag 
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Fig. C-25 Pressure Distribution Over the Forebody of the SA-203 Vehicle

at Moo = 0.9 and Various Angles of Attack
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Fig. C-25 Pressure Distribution Over the Forebody of the SA-203 Vehicle
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Fig. C-26 Shadowgraphs of the Flow Over the SA-203 Vehicle at CY = 0 
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Fig. C-27 Pressure Distribution Over the Forebody of the SA-203 Vehicle
at _ = 0 and Various Mach Numbers
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Fig. C-28 Terminal-Shock Position on the SA-203 Vehicle as a Function of Mach
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